Sarocladium spirale

Authors J.H. Ou, G.C. Lin & C.Y. Chen 2020
Strain 12047
Classification Hypocreales, Sarocladiaceae, Sarocladium
Culture collection BCRC FU31123
Detection frequency Low
Accession number LC461490
Figure Fig. 1 Sarocladium spirale. a–d. Colony on PDA (a), with reverse in b and MEA (c), with reverse in d. e. Funiculose bundle of mycelium, with lateral phialides. f, h–j. Conidiophores, phialides from vegetative hypha (j) or hyphal coil (h), and conidia. g. Hyphal coils. (a–d from strain BCRC FU31126; e–f from strain BCRC FU31123; g–j from strain BCRC FU31126) (Bars = 5 µm)
Colonies Colonies on PDA attaining 5, 6, 7, 0 mm after 7 days at 24°C, 28°C, 32°C, 37°C, respectively, flat, velvety, yellow-orange, slightly slimy in appearance, whitish at outer part, inner sector appearing funiculose composed of rope-like mycelial bundles, margins irregularly filiform, reverse yellowish with whitish outer area. Colonies on MEA attaining 20, 20, 12, 0 mm diam. after 7 days at 24°C, 28°C, 32°C, 37°C, respectively, pale yellowish, turning whitish towards the margin, translucent, reverse pale yellowish and turning whitish towards the margin, translucent.
Conidiophores Conidiophores mononematous, macro- or micronematous, arising from submersed hyphae or aerial mycelium. Conidiophores simple and up to 30 µm long, terminating in single or occasionally two divergent phialides, occasionally the conidiophores having one lateral branch with single terminal phialides, or conidiophores reduced and densely scattered when arising from funiculose bundles of mycelium.
Conidiogenous cells Phialides cylindrical, 25–50 × 1–2 µm µm, tapering towards the apex, arranged in terminal or intermediate whorls of up to 2(3), shorter when arising directly from hyphae (or reduced conidiophores), 10–35µm long, amounting to maximum 6 individuals on each conidiophore. Short lateral adelophialides sometimes present.
Conidia Conidia hyaline, 1-celled, cylindrical with rounded ends, 2.5–4.0 × 1–2.0 µm (length/width ratio 2.3–3.2), forming a slimy mass on top of phialides.
Note Hyphal coils occur abundantly on surface of medium.
Sarocladium spirale is more distinctly related to S. attenuatum, S. oryzae and S. sparsum and clusters with S. hominis and S. spinificis (Fig. 1, clade IV). Sarocladium spirale and S. hominis are morphologically similar in having mostly simple or poorly branched conidiophores, occasionally with two terminal divergent phialides, and having funiculose bundles of mycelium. However, S. spirale did not form aerial mycelium; colonies produced a yellow-orange pigmentation on PDA, and formed characteristically abundant hyphal coils. Additionally the phialides are longer in S. spirale (30–45 μm) compared with the phialides in S. hominis (22–37 μm). All the three strains of S. spirale could not grow at 37°C. Growth temperature limitation well distinguishes S. spirale from other species we obtained from rice. ITS/LSU/ACT sequences of S. spirale and the ex-type strain of S. hominis (UTHSC 04-1034) differ at 8/4/39–40 nucleotide positions. Sarocladium spirale resembles S. spinificis in having funiculose bundles of mycelium, but significantly differs in having branched conidiophores. Sarocladium brachiariae is the other species producing hyphal coils, but can be distinguished from S. spirale by shorter conidiophores (14–30 (40) × 2–2.5 μm) and longer conidia (3–8 (11) × 1–1.5μm) (Liu 2017).
No observable symptoms occurred after the inoculations of rice sheaths and grains by 3 strains (BCRC FU31126, BCRC FU31119, BCRC FU31123).
Pathogenicity Unknown
Specimens examined Taiwan, Tainan City, rice grains (cultivar Tainan 11), Nov 2012, Jie-Hao Ou, 12047
ITS ACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACCAGAGTGCCATAGGCTCTCCAACCCATTGTGAACATACCTATCGTTCCCTCGGCGGGCTCAGCGCGCGGGGCCTCCGGGCTTCCGGGCGTCCGCCGGGGACAACCAAACCCTGATTTACTACGTGTATCTCTGAGGGGCGAAAGCCCGAAAACAAAATAAATCAAAACTTTCAACAACGGATCTCTTGGCTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCGGCACTCCGGCGGGCATGCCTGTCCGAGCGTCATTTCAACCCTCAGGACCCCCTTTCGGGGCGGGACCTGGTGCTGGGGATCAGCGGCCTCCGGGCCCCTGTCCCCCAAATGAAGTGGCGGTCGCGCCGCAGCCTCCCCTGCGTAGTAGCACAACCTCGCACCGGAGAGCGGCACGGCCACGCCTTGAAACCCCCATATTTCTAAGGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACTTAA
LSU ACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAAAAGAAACCAACAGGGATTGCCTCAGTAACGGCGAGTGAAGCGGCAACAGCTCAAATTTGAAATCTGGCCGCAAGGTCCGAGTTGTAATTTGCAGAGGATGCTTTTGGCGAGGTGCCTTCCGAGTTCCCTGGAACGGGACGCCATAGAGGGTGAGAGCCCCGTACGGTAGGACCACCAAGCCTTTGTAAAGCTCCTTCGACGAGTCGAGTAGTTTGGGAATGCTGCTCTAAATGGGAGGTGTACGTCTTCTAAAGCTAAATACCGGCCAGAGACCGATAGCGCACAAGTAGAGTGATCGAAAGATGAAAAG
ACT GTCCTCCTCACTGAGGCTCCCATCAACCCCAAGTCCAACCGTGAGAAGATGACCCAGATTGTCTTCGAGACCTTCAACGCCCCCGCCTTCTACGTCTCCATCCAGGCCGTCCTTTCCCTGTACGCCTCCGGTCGTACCACCGGTATCGTTCTGGACTCTGGTGATGGTGTCACTCACGTTGTTCCCATCTACGAGGGTTTCGCCCTTCCTCACGCCATTGCTCGTGTTGACATGGCTGGCCGTGATCTTACTGATTACCTCATGAAGATCCTCGCTGAGCGCGGTTACACCTTCTCCACCACTGCCGAGCGTGAGATCGTTCGTGACATTAAGGAGAAGCTCTGCTACGTCGCCCTCGACTTCGAGCAGGAGATCCAGACTGCTGCCCAGTCCTCCAGCCTCGAGAAGTCCTACGAGCTTCCCGATGGACAGGTCATCACCATCGGCAACGAGCGTTTCCGTGCCCCCGAGGCTCTCTTCCAGCCTTCCGTCCTCGGCCTCGAGAGCGGCGGTATCCACGTCACCACCTTCAACTCCATCATGAAGTGCGACGTCGACGTCCGAAAGGATCTCTACGGCAACATTGTCATGGTATGTGCCATCCTCACTAAACCCGCGTTCGCAGTCTAGGAGAATTAACGTGTTTTAGTCTGGTGGTACCACCATGTACCCCGGTCTCTCCGACCGTATGCAGAAGGAGATCACTGCTCTTGCTCCTTCTTCCATGAAGGTCAAGATCATCGCTCCCCCGGAGCGCAAGTACTCTGTC
TUB AGGACCTGGTCAACAAGCTCGGCACCCTCAGTGTAGTGACCCTTGGCCCAGTTGTTGCCAGCACCAGACTGACCGAAGACGAAGTTGTCGGGGCGGAAAAGCTGACCGAAAGGACCGGCACGGACAGCATCCATGGTACCGGGCTCAAGATCGACGAGGACGGCGCGAGGAACGTACTTGTTGCCGGAGGCCTATCGAGGCGGTCAGTGGGTCCATTCAAGAGACGCGTTGTCGACATCTCGAAAGCTTCTGATTTAAATTTTGAGCTACGAACCTCGTTGAAGTAAACGCTCATGCGCTCGAGCTGGAGCTCGGAGGTGCCATTGTAGACACCGTTGCTGTCGAGGCCGTGCTCGCCAGAGATGGTCTGCCAGAAAGCAGCACCGATTTGGTTGCCCTACATCGAAAACATGGTGAGCCCCGCACATATAGCGGTCGGGAAGAGAGCTGCTTGTAGCTACTTACGCACTGGCCGGTCTGGAGGTGAACCTATTGACAAGGGACAAGATCATGGTCAGCAAATCTATTCCTTCTTTCAATGCCTTGAAGCTTCATCTTTGTTGACAACACCTGGTGATGGGTGTGCTAAGGTTTTGGTGGTACCCCGCCACGACATTTAGGGGTAACGGTCCTGCTGGCCACCATAGGAACGCGTCGCGCGGGGGCGGTGAAGTATGTGGCGTACGGGAGGAGGTGAAACTCACAATC